
Scalable Data Management: NoSQL Data Stores in
Research and Practice

Felix Gessert, Norbert Ritter
Database and Information Systems Group

University of Hamburg
{gessert,ritter}@informatik.uni-hamburg.de

Abstract—The unprecedented scale at which data is consumed
and generated today has shown a large demand for scalable
data management and given rise to non-relational, distributed
“NoSQL” database systems. Two central problems triggered this
process: 1) vast amounts of user-generated content in modern
applications and the resulting requests loads and data volumes
2) the desire of the developer community to employ problem-
specific data models for storage and querying. To address these
needs, various data stores have been developed by both industry
and research, arguing that the era of one-size-fits-all database
systems is over. The heterogeneity and sheer amount of these
systems – now commonly referred to as NoSQL data stores –
make it increasingly difficult to select the most appropriate system
for a given application. Therefore, these systems are frequently
combined in polyglot persistence architectures to leverage each
system in its respective sweet spot.
This tutorial gives an in-depth survey of the most relevant NoSQL
databases to provide comparative classification and highlight
open challenges. To this end, we analyze the approach of each
system to derive its scalability, availability, consistency, data
modeling and querying characteristics. We present how each
system’s design is governed by a central set of trade-offs over
irreconcilable system properties. We then cover recent research
results in distributed data management to illustrate that some
shortcomings of NoSQL systems could already be solved in
practice, whereas other NoSQL data management problems pose
interesting and unsolved research challenges.

I. INTRODUCTION

Traditional relational database management systems
(RDBMSs) provide powerful mechanisms to store and query
structured data under strong consistency guarantees and have
reached an unmatched level of reliability, stability and support
through decades of development. In recent years, however, the
amount of useful data in some application areas has become
so vast, that it simply cannot be stored or processed by
traditional database solutions [1]. User-driven content in social
networks or data retrieved from large sensor networks are
only two examples of this phenomenon commonly referred
to as Big Data [2]. A class of novel data storage products
able to cope with Big Data are subsumed under the term
NoSQL databases, many of which offer horizontal scalability
and higher availability than traditional relational databases or
other useful properties by sacrificing querying options and
consistency guarantees [3] .

There are dozens of NoSQL database systems, and it

is very hard to keep an overview over what these systems
provide, where they fail and where they differ. Beyond a mere
presentation of prominent NoSQL representatives and their
respective features, this tutorial intends to give an overview
over the requirements typically posed to NoSQL database
systems, the techniques used to fulfill these requirements and
the trade-offs that have to be made in the process.

The main problem NoSQL database systems seek to solve,
is providing storage and query capabilities for specific problem
domains. This encompasses specialization in data models,
query languages, consistency, scalability and availability prop-
erties, transactional guarantees, schema management, low la-
tency, analytical and real-time processing as well as durability,
reliability and elasticity. While the foundational techniques
are often similar (e.g., asynchronous master-slave replication),
the resulting systems exhibit very different behavior in both
functional and non-functional aspects. Since very different
requirements are often found in different parts of the same
application, a recent trend is the consolidation of different
database systems within a single application (polyglot persis-
tence).

Our tutorial discusses the characteristics of NoSQL
databases and introduces approaches proposed to address their
challenges. Furthermore, we highlight open problems that
provide opportunities for contributing to the emerging area of
scalable data management and polyglot persistence.

II. TUTORIAL OUTLINE

Our 1.5 hours tutorial is divided into fours parts and
structured as follows.

As background (Section II-A), we recall the basics of
distributed data management, in particular partitioning, repli-
cation, eventual consistency and the different NoSQL data
models. We also present the most important impossibility
results for distributed databases, in particular the widely used
CAP theorem.

The core survey of NoSQL databases is outlined in Section
II-B and covers the discussion and classification of the different
systems. Each system is described in depth and relations
to current research are given. We include open-source and
commercial NoSQL systems, research systems as well as
cloud-based database-as-a-service systems.

978-1-5090-2020-1/16/$31.00 © 2016 IEEE ICDE 2016 Conference1420

The third part (Section II-C) reviews the integration of
the discussed systems in polyglot persistence environments,
in particular challenges and potential benefits. The final part
of the tutorial (Section II-D) highlights open issues.

A. Foundations

The NoSQL movement [4] is motivated by horizontal
scalability to leverage clusters of commodity hardware and
minimization of the impedance mismatch between the data
model of the application and the database. Horizontal scalabil-
ity is addressed through partitioning1 and replication [5], [6],
[7]. Partitioning can be performed either hash-based or range-
based, favoring either fast-lookups and even data distribution
or efficient, single-site range queries. The applicability of hash-
based partitioning that is now widely used in NoSQL databases
is enabled by consistent hashing [8], [9]. Replication can be
either performed synchronously or asynchronously, allowing
a trade-off between low latency with higher availability and
stronger consistency [7]. Quorum-based replication protocols
allow tuning the desired level of consistency at runtime [10],
[11], [12].

Consistency-Availability Trade-Off. Since neither serializ-
ability nor strong consistency are achievable when network
partitions may occur [13] RDBMSs usually choose ACID
over high availability [14], [15]. Brewer’s CAP theorem states
that of the three properties availability (A), consistency (C)
and partition tolerance (P), any distributed database system
can achieve at most two [16]. CAP thus classifies NoSQL
database into the three categories AP, CP and CA. Though
CAP has been criticized as being an overly coarse-grained
consistency classification scheme [5], [17] it still succinctly
captures whether a particular system focuses more on avail-
ability or consistency (linearizability [18]).

Eventual Consistency. Another important impossibility result
governing the design and implementation of NoSQL stores
is the FLP theorem [19]. It states that in an asynchronous
network, no consensus protocol can guarantee termination if
one or more nodes can fail by stopping. Since consensus
protocols such as Paxos, Raft and ZAB are widely used in
NoSQL systems for group membership, atomic commitment
and conditional updates, these systems either have to relax
availability or consistency guarantees [20], [21], [22]. Many
models for eventual consistency have been proposed in the
literature [23], [24], [25]. NoSQL systems adopting these
relaxed models are usually referred to as BASE (Basically
Available, Soft-State, Eventually Consistent) [26]. In eventu-
ally consistent NoSQL systems, strong safety guarantees can
be achieved through automatic conflict resolution and conflict-
free data types [27].

Data Models. NoSQL databases are typically classified ac-
cording to their data model. Our focus lies on key-value,
document and wide-column stores; other NoSQL database
systems such as graph or object databases are not covered
in detail. Key-value stores expose data through arbitrarily
structured values accessible through a primary key. As the
nature of the stored value is opaque to the database, pure key-
value stores do not support operations beyond simple CRUD
(Create, Read, Update, Delete) [9], [28]. Document stores are

1also referred to as sharding or fragmentation

similar to key-value stores, but instead of arbitrary values,
they only accept values with a certain structure, e.g. JSON
documents [29], [30]. Through this restriction, document stores
can arrange data in a way that allows performing complex
queries [31]. Wide-column stores use a multi-level data model,
in which lexicographically ordered row keys map to values
categorized by column families, columns and timestamps,
effectively forming a sparse, multi-dimensional map [32].
Wide-column stores achieve horizontal scalability similar to
key-value stores while allowing for additional structure.

B. Survey and Classification of NoSQL Databases

Classification scheme. We categorize each system according
to non-functional and functional properties that we map to the
respective techniques that each NoSQL systems uses to achieve
them. Functional persistence requirements we review are [33],
[34], [3], [7]:

• ACID transactions with different isolation levels

• Atomic, conditional and/or set-oriented updates

• Queries: point access, scans, aggregation, selections,
projections, joins, subqueries, map-reduce, graph
queries, batch analytics, search, continuous queries

• Partial and/or commutative updates

• Data structures: graphs, lists, hash tables, trees,
queues, documents, etc.

• Structured, semi-structured or implicit schemata

• Semantic integrity constraints

Surveyed non-functional requirements are [35], [36], [5], [37]:

• Throughput for reads, writes and queries

• Read and write latency

• Availability for writes and/or reads during network
partitions and/or sever failures

• Scalability of data volume, reads, writes and queries

• Consistency guarantees: strong consistency, read-your-
writes, causal consistency, monotonic reads, mono-
tonic writes, writes follow reads, etc.

• Durability

• Elastic scale-out and/or scale-in

Dynamo-style systems. Many NoSQL systems are based on
the design of the key-value store Dynamo [9] or the wide-
column store Bigtable [32]. Dynamo achieves high availabil-
ity through quorum-based replication with consistent hashing
and is thus an AP-system. By allowing concurrent writes, it
achieves high availability but has to allow inconsistent data.
These inconsistencies are detected through vector clocks and
exposed to the application, which has to perform semantic
reconciliation. Through its fast asynchronous replication, read
repair and anti-entropy mechanisms, Dynamo nonetheless
quickly converges to a consistent state [11]. Riak [38] is a
popular open-source database that extends Dynamo’s model
by search, analytics and conflict-free data types.

1421

Bigtable-style systems. Bigtable (CP) is a wide-column store
that employs range-partitioning to provide scan queries and an
append-only I/O model to provide high write throughput [32].
It is built on the synchronously replicated Google File System
(GFS) [39] and can hence guarantee row-level atomicity. As
both GFS and Bigtable rely on a master to coordinate the
distribution of data partitions, the system is susceptible to
unavailability during network partitions and crashes of the
master. HBase adopts the Bigtable model using the Hadoop
ecosystem [40]. Cassandra leverages the data distribution
model of Dynamo while providing the data model of Bigtable
[41]. MegaStore is built on top of BigTable to provide multi-
key transactions across data centers and a strict schema [42].

Other NoSQL databases. MongoDB is a replicated document
store based on master-slave replication [43]. It provides rela-
tively powerful query capabilities, document-level atomicity
as well as hash- and range-based data partitioning. Similar to
Bigtable, MongoDB’s newest storage engine is based-on log-
structured merge trees to support high write throughputs. The
in-memory key-value store Redis is optimized for low latency
[44]. This is achieved by storing data in main memory while
replicating and logging updates according to configurable
policies. Database-as-a-Service (DBaaS) systems like Azure
Tables [45] and can be categorized similarly. Aspects that are
particularly relevant for a DBaaS are service-level agreements,
multi-tenancy and workload management [3], [46], [47].

C. Polyglot Persistence Architectures

The architectural pattern polyglot persistence describes the
use of different databases for different requirements [1]. The
key idea is that designing applications without a monolithic
database can tremendously increase developer productivity and
performance. Three different types of polyglot persistence
can be found in research and industry approaches. In the
application-coordinated polyglot persistence pattern the appli-
cation is solely responsible for distributing data and queries to
specialized databases. With the microservices pattern, storage
decisions are encapsulated by loosely coupled services. Poly-
glot database services offer database APIs and transparently
forward requests based on distribution rules.

D. Open Challenges

There are many open challenges for NoSQL data man-
agement. NoSQL systems need to support novel application
architectures (e.g., single-page or real-time apps) and deliver
low latency in face of distributed storage and application
tiers. There are currently no means to turn the functionality-
performance trade-off into a tunable runtime configuration.
Polyglot database services lack the capability to automate,
optimize and learn the best choice of given database systems.
They can neither route queries and data to minimize SLA
violations nor preserve consistency and transaction guarantees.

III. INTENDED AUDIENCE

The target audience is anyone with interest in learning
the trade-offs provided by NoSQL data stores. We expect the
tutorial to appeal to a large portion of the ICDE community:

• Students who are looking for novel research topics and
orientation

• Experienced Researchers in the fields of database
systems, cloud computing or distributed systems inter-
ested in open challenges and a comparative overview
of the NoSQL landscape

• Industry practitioners tackling data management prob-
lems who are looking for a survey and classification
of existing systems and their respective sweet spots

The tutorial is aimed at balancing between practical aspects
(e.g., APIs and deployments models) and research approaches
(e.g., novel architectures and transaction protocols) so that both
researchers and practitioners gain insights into the challenges
of the respectively other side.

IV. RELATIONSHIP TO PRIOR TUTORIALS

A related tutorial was held at the BTW 2015 database
conference [48] on non-relational cloud data management in
March 2015. Unlike this tutorial, there was a stronger focus on
cloud database systems and differences in their architectures
and SLAs. We incorporate the fundamental insights from
that prior tutorial but extend it with a more rigorous and
extensive treatment of the NoSQL data stores themselves. We
previously presented the practical aspects of NoSQL systems
in several internal conferences at software companies as well as
different graduate and undergraduate courses at the University
of Hamburg. Though this tutorial also discusses APIs and
programming models the stronger focus lies on reliability,
consistency and performance properties as well as approaches
for polyglot persistence. To the best of our knowledge there
are currently neither books nor other other tutorials that
systematically categorize and comprehensively survey the vast
landscape of NoSQL database systems.

REFERENCES

[1] P. J. Sadalage and M. Fowler, NoSQL distilled: a brief guide to the
emerging world of polyglot persistence. Pearson Education, 2012.

[2] D. Laney, “3D data management: Controlling data volume, velocity,
and variety,” META Group, Tech. Rep., February 2001.

[3] W. Lehner and K.-U. Sattler, Web-Scale Data Management for the
Cloud. Springer, 2013.

[4] R. Cattell, “Scalable sql and nosql data stores,” ACM SIGMOD Record,
vol. 39, no. 4, pp. 12–27, 2011.

[5] M. Kleppmann, Designing Data-Intensive Applications, 1st ed.
O’Reilly Media, Jan. 2016.

[6] B. Lindsay, P. Seilinger, C. Galtieri, J. Gray, R. Lorie, T. Price,
F. Putzulo, I. Traiger, and B. Wade, “Notes on Distributed Databases,”
1980.

[7] M. T. Ozsu and P. Valduriez, Principles of distributed database systems.
Springer-Verlag New York Inc, 2011.

[8] D. R. Karger, E. Lehmanl, T. Leightonl, R. Panigrahy, M. S. Levine, and
D. Lewin, “Consistent hashing and random trees: distributed caching
protocols for relieving hot spots on the World Wide Web,” in ACM
Symposium on Theory of Computing, 1997, pp. 654–663.

[9] G. DeCandia, D. Hastorun, M. Jampani, G. Kakulapati, A. Lakshman,
A. Pilchin, S. Sivasubramanian, P. Vosshall, and W. Vogels, “Dynamo:
amazon’s highly available key-value store,” in ACM SOSP, ser. 17,
vol. 14, 2007, pp. 205–220.

[10] D. K. Gifford, “Weighted voting for replicated data,” in ACM Sympo-
sium on Operating Systems Principles, 1979, pp. 150–162.

[11] P. Bailis, S. Venkataraman, M. J. Franklin, J. M. Hellerstein, and
I. Stoica, “Quantifying eventual consistency with PBS,” The VLDB
Journal, vol. 23, no. 2, pp. 279–302, Apr. 2014.

1422

[12] D. Bermbach, Benchmarking Eventually Consistent Distributed Storage
Systems. Karlsruhe, Baden: KIT Scientific Publishing, 2014.

[13] S. B. Davidson, H. Garcia-Molina, and D. Skeen, “Consistency in
a partitioned network: a survey,” ACM Computing Surveys (CSUR),
vol. 17, no. 3, pp. 341–370, 1985.

[14] M. Stonebraker, S. Madden, D. J. Abadi, S. Harizopoulos, N. Hachem,
and P. Helland, “The end of an architectural era:(it’s time for a complete
rewrite),” in Proceedings of the 33rd international conference on Very
large data bases, 2007, pp. 1150–1160.

[15] P. Bailis, A. Fekete, A. Ghodsi, J. M. Hellerstein, and I. Stoica, “Scal-
able Atomic Visibility with RAMP Transactions,” in ACM SIGMOD
Conference, 2014.

[16] S. Gilbert and N. A. Lynch, “Brewer’s conjecture and the feasibility of
consistent, available, partition-tolerant web services,” SIGACT News,
vol. 33, no. 2, pp. 51–59, 2002.

[17] D. J. Abadi, “Consistency tradeoffs in modern distributed database
system design: Cap is only part of the story,” Computer, no. 2, pp.
37–42, 2012.

[18] M. P. Herlihy and J. M. Wing, “Linearizability: A correctness condition
for concurrent objects,” ACM Transactions on Programming Languages
and Systems (TOPLAS), vol. 12, no. 3, pp. 463–492, 1990.

[19] M. J. Fischer, N. A. Lynch, and M. S. Paterson, “Impossibility of
distributed consensus with one faulty process,” Journal of the ACM
(JACM), vol. 32, no. 2, pp. 374–382, 1985.

[20] L. Lamport, “Paxos made simple,” ACM Sigact News, vol. 32, no. 4,
pp. 18–25, 2001.

[21] D. Ongaro and J. Ousterhout, “In search of an understandable consensus
algorithm,” Draft of October, vol. 7, 2013.

[22] P. Hunt, M. Konar, F. P. Junqueira, and B. Reed, “ZooKeeper: Wait-free
Coordination for Internet-scale Systems.” in USENIX Annual Technical
Conference, vol. 8, 2010, p. 9.

[23] W. Vogels, “Eventually consistent,” Communications of the ACM,
vol. 52, no. 1, pp. 40–44, 2009.

[24] A. Adya, “Weak consistency: a generalized theory and optimistic
implementations for distributed transactions,” Ph.D. dissertation, Mas-
sachusetts Institute of Technology, 1999.

[25] S. Friedrich, W. Wingerath, F. Gessert, and N. Ritter, “NoSQL OLTP
Benchmarking: A Survey,” in DMC 2014, ser. LNI, E. Pldereder,
L. Grunske, E. Schneider, and D. Ull, Eds., vol. 232. GI, 2014, pp.
693–704.

[26] A. Fox, S. D. Gribble, Y. Chawathe, E. A. Brewer, and P. Gauthier,
Cluster-based scalable network services. ACM, 1997, vol. 31, no. 5.

[27] M. Shapiro, N. Pregui\cca, C. Baquero, and M. Zawirski, “A compre-
hensive study of convergent and commutative replicated data types,”
2011.

[28] I. Stoica, R. Morris, D. Karger, M. F. Kaashoek, and H. Balakrishnan,
“Chord: A scalable peer-to-peer lookup service for internet applica-
tions,” ACM SIGCOMM Computer Communication Review, vol. 31,
no. 4, pp. 149–160, 2001.

[29] “CouchDB,” http://couchdb.apache.org/.
[30] “RethinkDB,” https://www.rethinkdb.com/.
[31] L. Qiao, K. Surlaker, S. Das, T. Quiggle, B. Schulman, B. Ghosh,

A. Curtis, O. Seeliger, Z. Zhang, A. Auradar, and others, “On brewing
fresh espresso: LinkedIn’s distributed data serving platform,” in Pro-
ceedings of the 2013 international conference on Management of data.
ACM, 2013, pp. 1135–1146.

[32] F. Chang, J. Dean, S. Ghemawat, W. C. Hsieh, D. A. Wallach,
M. Burrows, T. Chandra, A. Fikes, and R. E. Gruber, “Bigtable: A
distributed storage system for structured data,” ACM Transactions on
Computer Systems (TOCS), vol. 26, no. 2, p. 4, 2008.

[33] M. Schaarschmidt, F. Gessert, and N. Ritter, “Towards Automated
Polyglot Persistence,” in Datenbanksysteme fr Business, Technologie
und Web (BTW), 16. Fachtagung des GI-Fachbereichs ”Datenbanken
und Informationssysteme”, 2015.

[34] U. Strl, T. Hauf, M. Klettke, S. Scherzinger, and O. T. H. Regens-
burg, “Schemaless NoSQL Data StoresObject-NoSQL Mappers to the
Rescue?” in Proc. BTW, vol. 15, 2015.

[35] E. Brewer, “CAP twelve years later: How the” rules” have changed,”
Computer, vol. 45, no. 2, pp. 23–29, 2012.

[36] S. Babu and H. Herodotou, “Massively parallel databases and mapre-
duce systems.” Foundations and Trends in Databases, vol. 5, no. 1, pp.
1–104, 2013.

[37] P. Xiong, Y. Chi, S. Zhu, H. J. Moon, C. Pu, and H. Hacigümüş,
“Intelligent management of virtualized resources for database systems
in cloud environment,” in Data Engineering (ICDE), 2011 IEEE 27th
International Conference on. IEEE, 2011, pp. 87–98.

[38] “Riak,” http://docs.basho.com/riak/latest/.
[39] S. Ghemawat, H. Gobioff, and S. T. Leung, “The Google file system,”

in ACM SIGOPS Operating Systems Review, vol. 37, 2003, pp. 29–43.
[40] “HBase,” https://hbase.apache.org/.
[41] A. Lakshman and P. Malik, “Cassandra: a decentralized structured

storage system,” ACM SIGOPS Operating Systems Review, vol. 44,
no. 2, pp. 35–40, 2010.

[42] J. Baker, C. Bond, J. C. Corbett, J. J. Furman, A. Khorlin, J. Larson,
J.-M. Lon, Y. Li, A. Lloyd, and V. Yushprakh, “Megastore: Providing
Scalable, Highly Available Storage for Interactive Services.” in CIDR,
vol. 11, 2011, pp. 223–234.

[43] “MongoDB,” https://www.mongodb.org/.
[44] “Redis,” http://redis.io/.
[45] B. Calder, J. Wang, A. Ogus, N. Nilakantan, A. Skjolsvold, S. McK-

elvie, Y. Xu, S. Srivastav, J. Wu, H. Simitci, and others, “Windows
Azure Storage: a highly available cloud storage service with strong
consistency,” in Proceedings of the Twenty-Third ACM Symposium on
Operating Systems Principles. ACM, 2011, pp. 143–157.

[46] F. Gessert, F. Bucklers, and N. Ritter, “Orestes: A scalable database-as-
a-service architecture for low latency,” in Workshops Proceedings of the
30th International Conference on Data Engineering Workshops, ICDE
2014, Chicago, IL, USA, March 31 - April 4, 2014. IEEE, 2014, pp.
215–222.

[47] C. Curino, E. P. Jones, R. A. Popa, N. Malviya, E. Wu, S. Madden,
H. Balakrishnan, and N. Zeldovich, “Relational cloud: A database-as-
a-service for the cloud,” in Proc. of CIDR, 2011.

[48] F. Gessert and N. Ritter, “Skalierbare NoSQL- und Cloud-Datenbanken
in Forschung und Praxis,” in Datenbanksysteme für Business, Technolo-
gie und Web (BTW 2015) - Workshopband, 2.-3. März 2015, Hamburg,
Germany, ser. LNI, vol. 242. GI, 2015, pp. 271–274.

Felix Gessert is a Ph.D. student at the databases and
information systems group at the University of Hamburg. His
main research fields are scalable database systems, transactions
and web technologies for cloud data management. His thesis
addresses caching and transaction processing for low latency
mobile and web applications. He is also founder and CEO of
the startup Baqend that implements these research results in a
cloud-based backend-as-a-service platform. Since their product
is based on a polyglot, NoSQL-centric storage model, he is
very interested in both the research and practical challenges
of leveraging and improving these systems. He is frequently
giving talks on different NoSQL topics.

Norbert Ritter is a full professor of computer science at
the University of Hamburg, where he heads the databases and
information systems group. He received his Ph.D. from the
University of Kaiserslautern in 1997. His research interests
include distributed and federated database systems, transac-
tion processing, caching, cloud data management, information
integration and autonomous database systems. He has been
teaching NoSQL topics in various database courses for several
years. Seeing the many open challenges for NoSQL systems,
he and Felix Gessert have been organizing the annual SCDM2

workshop for three years to promote research in this area.
2Scalable Cloud Data Management Workshop: www.scdm2015.com

BIOGRAPHIES

1423

